TEACHING ACID-BASE INTERPRETATION: WHAT IS THE BESTAPPROACH?

Doug Pursley, M.Ed., RRT-ACCS, FAARC

Objectives

- 1. Discuss various simplistic, stepwise methods for interpreting the acid-base status of a patient
- 2. Describe the primary components of a comprehensive approach to assessing acid-base balance

References

- 1. All You Really Need To Know To Interpret Arterial Blood Gases, Lawrence Martin
- 2. Clinical Blood Gases, William Malley
- 3. ABG Pocket Guide, Dana Oakes
- 4. Anaesthesia Education Website
- http://www.anaesthesiamcq.com/d efault.php

Stepwise methods (classification)

 Uses systematic arrangement of values according to established criteria in order to arrive at a diagnosis

Stepwise methods

- Arrow Method (high-low)
- Variations of the arrow method
 - Tic-Tac-Toe method
 - Romanski method
 - "H" method

Arrow System

	pН	Paco ₂	HCO_3^-
Respiratory alkalosis Uncompensated	\uparrow_{\uparrow}	\downarrow	N
Fully compensated	N	\downarrow	\downarrow
Respiratory acidosis Uncompensated Partially compensated Fully compensated	\downarrow \downarrow N	$\uparrow \\ \uparrow \\ \uparrow$	\mathbf{N} \uparrow
Metabolic acidosis Uncompensated Partially compensated Fully compensated	\downarrow \downarrow N	$\begin{array}{c}\mathbf{N}\\ \downarrow\\ \downarrow\end{array}$	\downarrow \downarrow \downarrow
Metabolic alkalosis Uncompensated Partially compensated Fully compensated	$\uparrow \\ \uparrow \\ N$	N ↑ ↑	$\uparrow \\ \uparrow \\ \uparrow$

N, Within normal range; \uparrow , above normal range; \downarrow , below normal range.

Tic-Tac-Toe method

http://nurseslabs.com/8-step-guide-abg-analysis-tic-tac-toe-method/

Romanski method

- Step 1: Evaluate pH
- Step 2: Evaluate respiratory and metabolic components
- Step 3: Determine consistent value
- Step 4: Determine compensation

Larkin, B. G., MS, RN, ACNS-BC, CNS-CP, CNOR, & Zimmanck, E. J., MD. (2015, October). Interpreting Arterial Blood Gases Successfully. Retrieved June 13, 2016, from https://www.aorn.org/websitedata/cearticle/pdf_file/CEA1554 2-0001.pdf

https://prezi.com/Imyewp-he4b2/using-the-h-model-to-interpretabgs/

Comprehensive approach (Interpretation)

 Uses physiologic rules and mathematical equations in order to apply a proper interpretation to the results

Teaching the Comprehensive Approach

- 1. Basic instruction about the four parts of acid-base physiology (pH, PaCO2, HCO3, Base) and how to check consistency/inconsistency via H-H equation
- 2. Then we teach one acid-base disorder at a time (including causes) followed by mixed disorders and case studies to put it all together. Always use patient history, electrolytes, and previous ABGs when available.

Comprehensive approach

- 3. Respiratory disorders
 - Apply rules that predict how pH and HCO3 change per given change in PaCO2 in both acute and chronic conditions
- 4. Metabolic disorders
 - Examine anion and bicarbonate gaps
 - Apply rules the predict expected PaCO2 in metabolic acidosis and alkalosis i.e. Winter's and "Point Seven Plus Twenty" rule

Consistency/Inconsistency

All acid-base data should calculate out according to the Henderson-Hasselbalch equation
[HCO₃ ÷ (PaCO₂ x 0.0₃)] log + 6.1 = pH

Base Excess & Calculated Bicarbonate

Emergency Med & Drip

PCCM Home		Dosing
r cert nome	Calculate the serum bicarbonate from the serum pH and pCO ₂ .	A-a Gradient
Our Unit		Alveolar Gas Equation
the full of the second second second	Input pH	Age
Our Faculty and Staff	Input pCO ₂	Base Excess
Referring A Patient		Basal Energy Exp
· · · · · · · · · · · · · · · · · · ·	Calculato	Body Mass Index
Interhospital Transport	Calculate	Body Surface Area
		Calcium Equivalents
Fellowship Applicants	HCO ₃ =	CrCl Measured
Medical Calculators	Base Excess =	CrCl Schwartz
		CrCl Schwartz Rev
Contact Us		CRRT Clearance
		Dehydration Correction
	The calculations above are based on the Henderson-Hasselbalch	FENa
	equation:	Gauge-French Conversion
		Glucose Infusn Rate
	pH = pK + log	Half Life
	[CO ₂]	Oxygen Content
		Oxygen Index
	Replacing pK = 6.1, and $[CO_2] = 0.03 * pCO_2$, and removing the	Oxygen Saturation
	logarithms to get	Osmolality, Serum

http://www-users.med.cornell.edu/~spon/picu/calc/basecalc.htm

Or just Google: "Cornell base excess"

Home

RULES AND EQUATIONS

Anion Gap

- AG = (Na + K⁺) (Cl + HCO₃) or clinical equation...
- AG = Na (Cl + HCO₃)
 - 12 is normal
 - > 20 suggests metabolic acidosis
 - >30 is 100% chance of metabolic acidosis

Bicarbonate Gap

- BG = ΔAG Δ HCO₃ or clinical shortcut...
 BG = Na Cl 36
 - >+6 suggests metabolic alkalosis or compensation for respiratory acidosis
 - < -6 suggests hyperchloremic metabolic acidosis or compensation for respiratory alkalosis

Expected PaCO2 in metabolic acidosis and alkalosis

- Expected PaCO2 in metabolic acidosis (Winter's formula):
 - Expected PaCO2 = HCO3 × 1.5 + 8 (+/- 2)
- Expected PaCO2 in metabolic alkalosis: (Point Seven Plus Twenty rule)
 - Expected PaCO2 = HCO3 x 0.7 + 20 (+/- 5)

Expected changes in pH and HCO3 for 10 mmHg △ in PaCO2 starting at PaCO2 of 40 mmHg

Condition	Acute	Chronic
Respiratory acidosis	pH↓ by o.o6	pH by 0.03
	HCO3 type by 1 (hydrolysis)	HCO3 by 4
Respiratory alkalosis	pHt by 0.1	pHt by o.o3
	HCO3↓ by 2 (hydrolysis)	HCO3↓ by 5

Case 1 - ABG and electrolytes taken from a 55 year old male with aspirin OD:

pH 7.46 PaCO2 19 Expected PaCO2 = 27 HCO3 13 Na 146 • CI 106 • AG = 27 ◆ BG = +4

 Arrow method: partially compensated respiratory alkalosis.

 Actual interpretation is metabolic acidosis with respiratory OVER compensation (respiratory alkalosis) Case 2 - 66 year old male with chronic hypercapnia (PaCO2 75-85) and NG tube • pH 7.45

- PaCO2 79
- HCO3 53
 - Expected HCO₃ for this degree of chronic hypercapnia is 40
- Na 144
- Cl 79
- AG = 12
- BG = +29

- In spite of clinical scenario, stepwise methods classify these values as
 compensated metabolic alkalosis
- Actual interpretation is chronic hypercarbia AND metabolic alkalosis

Case 3 - 36 year old female presents to the ED with pain and anxiety

- pH 7.58
- PaCO2 22
- HCO3 19.9
- Base -1.7

Also, in single acid-base disorders, a base excess/deficit in the normal range would rule out partial compensation.

 Arrow: partially compensated respiratory alkalosis
 Actual interpretation is acute respiratory alkalosis.

HCO₃ dropped from hydrolysis.

Case 4 – 71 year old end-stage COPD with suspected pneumonia. His steady-state values are normally 7.31/73/36/+9. ABGs in the ED are:

pH 7.43
PaCO2 53
HCO3 34
Base +9

 Stepwise methods (because they don't consider history) classify these values as compensated metabolic alkalosis Actual interpretation is acute hypocapnia superimposed on chronic

respiratory acidosis.

Case 5 - A adult male patient is brought to the ER has the following ABG on a nasal cannula at 2 l/m:

- 3:49 am
- pH 6.83
- PaCO2 139
- PaO2 138
- HCO3 22
- Base -10

 Arrow: acute respiratory acidosis
 Actual interpretation: mixed respiratory and metabolic acidosis Case 5 continued - A second ABG is taken 23 minutes later while the patient is being manually ventilated:

- 3:49 am
- pH 6.83
- PaCO2 139
- HCO3 22
- Base -10 Base -10

- 4:12 am
- pH 7.19
- PaCO2 45
 - HCO3 17

Good work by the respiratory therapist!!! Also, good example of hydrolysis. Case 6 – 23 year old man being evaluated in the ED for severe pneumonia. Respiratory rate is 38 and he is using accessory muscles.

- pH 7.29
- PaCO2 55
- HCO3 26
- Base -1
- PaO2 47
- Na 154
- Cl 100
- AG 28
- BG +18

 Stepwise: acute respiratory acidosis

- Actual interpretation: respiratory acidosis + metabolic acidosis + metabolic alkalosis
 - Note in this situation that
 base is normal from
 competing metabolic
 acidosis and alkalosis

Case 7 – 24 year old DKA

- pH 7.17
- PaCO2 17
- HCO3 6
- Base 20

 Stepwise: partially compensated metabolic acidosis

 Actual interpretation: maximally and appropriately compensated metabolic acidosis.

Last two digits rule and Winter's indicate maximal compensation in this patient.

Case 8 – 18 year old female, previously healthy, opioid OD

- pH 7.19
 PaCO2 60
- HCO3 22

- Stepwise: acute respiratory acidosis
- Actual interpretation: mixed respiratory and metabolic acidosis. Base is -5

If acute, HCO₃ should be 26 from hydrolysis
HCO₃ is lower than it should be from the metabolic acidosis

Case 9 – 64 year old woman admitted to the ED with renal failure and vomiting

- pH 7.40
- PaCO2 38
- HCO3 23
- Na 149
- K+ 2.8
- Cl 100
- Creatinine 8.7 mg/dl
- AG 26
- BG +13

 Stepwise: normal
 Actual interpretation: coexistent metabolic acidosis and metabolic alkalosis. Case 10 – Previously healthy, 56 year old man in the recovery room following cholecystectomy

- pH 7.22
- PaCO2 70
- HCO3 27.7
- Base +0.5

- Stepwise: partially compensated respiratory acidosis
- Actual interpretation: acute respiratory acidosis. HCO3 elevated from hydrolysis.
 Base is normal. If truly partially compensated, there would be a base excess.

Case 11 – Patient with chronic hypercapnia and hypokalemia

pH 7.40
PaCO2 60
HCO3 36

Stepwise: compensated respiratory acidosis OR compensated metabolic alkalosis. Could not distinguish with pH 7.40 Actual interpretation: primary respiratory acidosis AND primary metabolic alkalosis. Base is +11.

If this were a single metabolic alkalosis the PaCO2 would only compensate 45 according to the "Point Seven Plus Twenty" rule. HCO3 is higher from primary metabolic alkalosis.

Conclusion/Summary

- A proper acid-base diagnosis is vital to guide treatment decisions at the bedside
- Many patients have very complex acid-base disturbances
- Stepwise methods such as the arrow method OVER simplify acid-base interpretation
- We owe it to our students to give them all the tools to properly interpret arterial blood gases!